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The dense branching morphology appears in a number of pattern-forming systems. Neither ordered nor
fractal, this pattern is characterized by a large number of branches advancing at constant areal density behind
a smooth envelope. We propose a two-sided model which accounts for the stability of the dense branching
morphology~DBM! through dissipative and anisotropic current transport in the evolving pattern. Confinement
of currents to slightly resistive branches suffices to stabilize radially symmetric DBM growth in two and three
dimensions. Stability of the planar DBM, on the other hand, is found to require, in addition, the introduction
of a characteristic length scale, such as a short diffusion length.@S1063-651X~96!03009-7#

PACS number~s!: 68.70.1w, 47.54.1r, 68.35.Fx

I. INTRODUCTION

Several distinct classes of patterns, or morphologies, can
emerge when the interface between two phases is driven out
of equilibrium by a diffusive field. Highly branched fractals
resembling diffusion limited aggregation~DLA ! clusters@1#,
snowflakelike dendrites@2#, and dense branching patterns
@3,4# are produced by processes as varied as viscous fluid
displacement and electrochemical deposition of metals and
polymers. The dense branching morphology~DBM!, ex-
amples of which appear in Fig. 1, is characterized by a large
number of fine branches advancing behind a smooth stable
envelope. Unlike ordered dendrites, the individual branches
in the DBM are unstable against repeated tip splitting. In this
respect, the DBM more closely resembles DLA. Unlike
DLA, however, the ensemble of DBM branches fills space
uniformly. The underlying interfacial instability responsible
for branch formation also might be expected to destabilize
the apparent interface enclosing the branch tips. A central
challenge for models of densely branched growth, thus, is to
explain the stability of the smooth advancing envelope.

Many pattern forming systems such as electrochemical
deposition, viscous fingering, and dielectric breakdown can
be described by a model in which the interface’s movement
is governed by a scalar field satisfying Laplace’s equation at
least in the quasistatic limit@5,6#. The simplest version of the
Laplacian growth model treats the moving interface as an
equipotential. Under these conditions, the tendency of pro-
trusions to concentrate field gradients, which was first em-
phasized in this context by Mullins and Sekerka@7#, renders
a smooth advancing interface linearly unstable to perturba-
tions at all wavelengths. Corrections to the interfacial poten-
tial due to surface tension and growth kinetics can stabilize
the interface at wavelengths comparable to the width of a
branch, but do not suppress longer-wavelength instabilities.
Extension of the Mullins-Sekerka analysis to systems with
finite diffusion lengths also results in linear instability at long
wavelengths. The existence of these long-wavelength insta-
bilities suggest that the DBM cannot form in standard non-
dissipative models for diffusive pattern formation.

Previous efforts@4,8,9# to extend these models by ac-
counting for the small but nonvanishing resistance to
gradient-driven currents in the patterns’ branches have been

obliged to distinguish between two experimental geometries.
In the radial geometry the pattern grows outward from a
source of radiusr c centered within a region of radiusR,
while in the flat geometry it advances between parallel planar
boundaries separated by distanceR. The distinction arises
because the DBM was found to be linearly stable in the
two-dimensional radial case, but not in the planar geometry
@4#. Thus these models fail to account for the appearance of
structures such as that in Fig. 1~b! which suggests that the
DBM can occur in the planar geometry also.

This article is organized as follows. The growth model is
presented in Sec. II in the context of pattern formation during
electrochemical deposition and viscous fingering. This sec-
tion also outlines the linear stability analysis used in the
following section to investigate morphological stability of
the DBM. The central results of this article are presented in
Sec. III. Section III A reviews our previously reported results
for the 2D radial geometry in the quasistationary approxima-
tion. We extend this analysis in Secs. III B and III C both to
the 3D radial geometry and also beyond the quasistationary
approximation in the planar geometry. We find a range of
nontrivial growth conditions under which the radial DBM is
linearly stable in three dimensions. No such conditions are
found for growth from a line or a plane in the quasistationary
approximation. Stability of the planar DBM is established,
however, by including both dissipation and a finite diffusion
length. This analysis therefore extends the range of pattern
forming systems for which the dissipative growth model ac-
counts for the appearance of the dense branching morphol-
ogy.

II. DISSIPATIVE AND ANISOTROPIC GROWTH MODEL

Dissipation occurs naturally in the growth channels of
many physical pattern forming systems. In electrochemical
deposition, for example, the deposited metal has a measur-
able resistance; the advancing fluid in viscous fingering sys-
tems similarly has a finite viscosity. A complete theory for
pattern formation in such systems would account for field
gradients within the detailed branching geometry of the
evolving pattern. In the absence of such a theory, we con-
struct a self-consistent model by assuming that a dense
branching pattern has already formed and investigating its
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stability against small deformations. We treat the region be-
hind the smooth advancing envelope as an effective medium
whose transport properties mimic those of actual patterns at
least in an average sense.

Our two-sided model consists of a scalar field both in the
patterned aggregate region~region 1! and in the region out-
side ~region 2!. Within the aggregate region, the fieldu1(rW)
satisfies an anisotropic Laplace’s equation

s i¹ i
2u11s'¹'

2u150, ~1!

wheres i ands' are, respectively, the conductivities along
and perpendicular to the branches;¹ i

2 and ¹'
2 denote the

corresponding components of the Laplacian. This macro-

scopic conductivity anisotropy originates from the branched
structure of the DBM and reflects the currents’ preference to
flow along the branches rather than between them. It should
not be confused with the microscopic crystalline anisotropy
which is responsible for stabilizing the dendritic morphology
against tip splitting.

Outside the pattern, we assume the fieldu2(rW) satisfies the
diffusion equation

s2¹
2u25

]u2
]t

. ~2!

This reduces to the usual Laplace’s equation in the quasi-
static limit. The conductivitys2 in this region is isotropic.
We assume that the interface advances at a rate proportional
to the local current density,vW 5b jWurWs, whereb is a system-

dependent material parameter andrWs is the position of the
interface. We further assume that the currents arise from gra-
dients in the field according to Fick’s law

jW5s¹W u. ~3!

The system is driven out of equilibrium by a constant poten-
tial difference applied across the boundaries atrWc andRW

u1~rWc!50, ~4!

and

u2~RW !51. ~5!

Assuming continuity in both the field and current across the
interface atrWs ,

u1~rWs!5u2~rWs!, ~6!

and

jW1~rWs!5 jW2~rWs! ~7!

allows us to solve for the interface’s evolution.
In the context of electrochemical deposition, Eqs.~1!–~7!

might be interpreted as describing a pair of arbitrarily shaped
electrodes held at a fixed voltage difference in contact with
an electrolyte of conductivitys2. The fieldu(rW) then would
correspond roughly to the electrochemical potential at posi-
tion rW. For viscous fingering,u(rW) represents the local pres-
sure field, and the system is driven by a constant pressure
difference between the boundaries. While this simple growth
model glosses over most system-dependent details which
might dominate a system’s behavior under some operating
conditions, its behavior is rich enough to shed light on ge-
neric mechanisms of pattern formation under diffusive con-
trol.

We find it useful to define two-dimensionless control pa-
rameters: the conductivity anisotropy

g25
s'

s i
, ~8!

and the conductivity contrast

b5
s2

s i
. ~9!

FIG. 1. Densely branched growth in quasi-two-dimensional
electrochemical deposition.~a! Radial geometry. Zinc deposited
from 0.05M ZnSO4 at 10 V, with r c50.1 mm andR54.2 cm.~b!
Flat geometry. Copper deposited from 0.1M CuSO4 at 5 V with
R54 mm.
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Large anisotropy is indicated by small values ofg, which
physically correspond to stronger confinement of currents to
the branches. Smaller values ofb similarly correspond to
stronger conductivity contrast between the invading and dis-
placed phases. For viscous fingering, the conditionb.1 cor-
responds to injecting a viscous fluid into an inviscid fluid.
The interface is intrinsically stable under these conditions
and no branches form. By contrast,b50 corresponds to the
DLA-like case in which the aggregate surface is an equipo-
tential and the interface is intrinsically unstable at all wave-
lengths. We focus instead on the more interesting intermedi-
ate range 0,b,1.

Analysis of this model can either proceed numerically on
a computer, or analytically via linear stability analysis. Pre-
viously @4#, 2D radial computer simulations of this model
were performed, showing DLA and DBM-like growth. Here,
we concentrate on linear stability analysis to probe the pre-
dictions of our model in various geometries. Following the
procedure described by Mullins and Sekerka@7# we first as-
sume that a radial or planar DBM has formed of a certain
size and that its envelope separates regions 1 and 2 in the
above formulation. The envelope is then distorted with a
perturbation of infinitesimal amplituded. Since a general
infinitesimal perturbation can be built up by linear superpo-
sition of any complete set of functions, we examine only
sinusoidal modulations in the 2D radial and planar geom-
etries, and spherical harmonics in the 3D radial geometry.
The response of the system to linear order ind is then cal-
culated in the form of a dimensionless growth rate of the
perturbation

a5
ḋ/d

v0 /r 0
, ~10!

wherer 0 labels the position of the unperturbed envelope, and
v0 its velocity.

III. RESULTS

A. Two-dimensional radial geometry

In the two-dimensional radial geometry, a DBM aggre-
gate has a circular envelope of radiusr 0 with radially radi-
ating branches. We have discussed this geometry in detail in
Ref. @4# and include an overview here for completeness and
to contrast with results for other geometries. A circular in-
terface preserves its shape under Eqs.~1!–~7! and advances
with a radial velocity

v05
bs2

r 0Fb lnS r 0r cD1 lnS Rr 0D G
. ~11!

The conductivity anisotropyg does not appear in Eq.~11!
because there are no tangential currents in this radially sym-
metric solution. The linear stability of the interface is deter-
mined by studying the evolution of anm-fold sinusoidal per-
turbation of infinitesimal amplitudedm

r s5r 01dmcos~mu!. ~12!

As we previously reported@4#, the relative growth rate of
perturbations in this model is

am5211
mg~12b!

b tanhFmg ln S r 0r cD G1g tanhFm lnS Rr 0D G
.

~13!

This result was found to be in good qualitative and fair quan-
titative agreement with both numerical simulations and
quasi-two-dimensional electrochemical deposition experi-
ments.

For sufficiently large internal dissipation~values of b
larger than zero! and sufficiently strong anisotropy~small
values ofg), the relative growth rate is negative for small
mode numbers; the circular envelope is stable against long-
wavelength perturbations under these conditions. Both dissi-
pation and current confinement are required to stabilize the
smooth envelope of densely branched structures. In contrast
to the suggestion of Erlbacher, Searson, and Sieradzki@10#
that the dense branching morphology is stabilized in quasi-
two-dimensional experiments by three-dimensional effects,
our result indicates that the DBM can be stable in purely
two-dimensional systems.

Earlier one-sided models which attempted to account for
dissipation in the growth channels through corrections to the
interfacial boundary condition failed to account for stable
dense branching structures in electrochemical deposition
when reasonable estimates forb were used@4,9,11#. Even
with a conductivity contrast as small asb'1/100, the
present model can account for the stability of the DBM pro-
vided the confinement of currents to the branches is suffi-
ciently strong. Comparable values forb have been estimated
from measurements in quasi-two-dimensional electrochemi-
cal deposition experiments under conditions which formed
the DBM @9#. Strong confinement of currents to the branches
in these experiments is reasonable since the electrolyte be-
tween the branches is known to be largely depleted of metal
ions @12#.

B. Three-dimensional radial geometry

Experiments such as those depicted in Fig. 1 have three-
dimensional analogs which have been studied@13–15# al-
most as extensively as their more easily interpreted two-
dimensional variants. Recent advances in admittance
spectroscopy@14# and image analysis@15# make it possible
to analyze the shapes of evolving three-dimensional patterns.
High speed magnetic resonance imaging also has been ap-
plied to the study of fluid flow in porous media. Three-
dimensional radial pattern formation, in which branches
grow outward from the end of a conduit, constitute another
class of systems to which our growth model should pertain.

In the full three-dimensional radial geometry model, the
unperturbed spherical interface advances with velocity

v05
bs2

r 0
Fbr 0r c 1~12b!2

r 0
RG21

. ~14!

An infinitesimal perturbation to the growth front with a
spherical harmonic
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r s5r 01d l
mYl

m~r ,u,f! ~15!

grows at the relative rate

a l5221~12b!H 2

~2l11!cothF2l11

2
lnS Rr 0D G11

1
2b

w cothFw2 lnS r 0r cD G21 J 21

, ~16!

wherew5A114g2l ( l11). Figure 2 shows a plot of the
growth rate as a function of the perturbation harmonic for a
range of dissipation values. The growth rate is negative for
values of l less than a critical mode numberl c which de-
pends on the degree of dissipation in the growth channels.
Such long-wavelength perturbations shrink as the aggregate
grows. The greaterl c , therefore, the more nearly spherical
the evolving pattern appears. In Fig. 3 this marginally stable
harmonic number is plotted as a function of the amount of
dissipation (b) and anisotropy (g) in the system. As seen
from the plot, dissipation and current confinement act in con-
cert to stabilize the dense branching morphology in the three-
dimensional radial geometry.

In the limit R@r 0, we can solve for the critical aggregate
radius beyond which the envelope will be stable against per-
turbations of harmonic numberl

r 0*5r cF4b~ l11!1~12b!~ l11!~w11!22~w11!

4b~ l11!2~12b!~ l11!~w21!12~w21!G
1/w

.

~17!

In the anisotropic limit (g→0), the expression simplifies to

r 0*5F11
12b

2b
2

1

b~ l11!G r c . ~18!

For r 0*,r c the DBM is stable against perturbations of har-
monic number greater thanl . Even for r 0*.r c , an initially
disordered core pattern can cross over into a regime where
densely branched growth will be stable, provided the envel-

oping equipotential still is reasonably smooth by the time the
interface has advanced to a mean positionr5r 0* . The size at
which the envelope of the growing pattern becomes stable
scales with the size of the inner boundaryr c and depends
strongly on the amount of dissipation in the system. The
position at which such a crossover to stable dense radial
growth might occur forg51/100 andR5100r c appears in
Fig. 4 as a rapid increase inl c with r 0. Under certain condi-
tions, l c decreases again forr 0 very nearR and a second
crossover from stable DBM to unstable growth is possible.

C. Growth from a line or plane

In a planar geometry version of the dissipative quasistatic
model, the growth rate of a sinusoidal perturbation of wave
numberk is given by

ak5
kx0~12b!

b

g
tanh~gkx0!1tanh@k~R2x0!#

, ~19!

wherex0 is the location of the unperturbed interface along

the growth directionxŴ . The growth rateak is positive for all
wave numbers in all regions of parameter space, so that the
flat envelope is unstable against perturbations at all wave-
lengths. This result reflects the planar geometry’s lack of a
characteristic length scale to play the role played byr c in the
radial geometry. Without such a reference against which to
distinguish perturbations of different sizes, they are either all
stable or all unstable. The branches’ transport properties as
modeled in Eq.~1! do not introduce new length scales them-
selves.

The quasistatic approximation to Eq.~2! requires the dif-
fusion lengthl5s2/2v0 to be larger than any other charac-
teristic sizes in the system. If we relax this requirement, then
l may influence the stability of the DBM. Thus outside the
patterned aggregate region we seek a solution to the diffu-
sion equation. The similarity transformz5x/x0(t) rescales
the problem into the frame moving with the interface. In this
frame, the diffusion equation has the form

d2ū2~z!

dz2
52j

dū2~z!

dz
, ~20!

FIG. 2. Dimensionless growth ratea l of the l th harmonic in the
three-dimensional radial geometry. Conductivity anisotropyg5
0.01,r 0510r c , andR5100r c . Lines are plotted forb5

1
35,

1
30,

1
25 ,

1
20, and

1
15. As the branches become increasingly resistive, the criti-

cal mode number below which all modes are stable increases. The
dependence onR is very weak providedr 0!R.

FIG. 3. Plot of the critical perturbation harmonicl c as a function
of the amount of dissipationb and degree of anisotropyg in the
three-dimensional radial geometry model, withr 0510r c , and
R5100r c . Dissipation and anisotropy both help stabilize the DBM.
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whereū2(z)5u2(x,t) andj5x0v0 /s2. Equation~20! is in-
tegrable provided thatj is a constant. This requirement in
turn determines the time dependence of the interfacial posi-
tion and velocity

x05A2js2t, ~21!

and

v05S js2

2t D 1/2.
Similar time evolution was obtained by Zener in his model
of nondissipative diffusive growth@16#. The solution to Eq.
~20! which satisfies the boundary conditions in Eqs.~5!–~7!
in the limit of largeR is given by

u2~x,t !5
jb

b
1S 12

jb

b D F12
erfc~x/2As2t !

erfc~Aj/2!
G , ~22!

wherej satisfies the transcendental equation

expS j

2DerfcS F j

2G1/2D5S 2

pj D 1/2~b2jb!. ~23!

We are now in a position to show that diffusion without
dissipation in the growth channels is not sufficient to stabi-
lize the planar DBM. In the limitb50, the advancing pat-
tern is an equipotential withu1(rWs ,t)50 and the linear sta-
bility calculation for the similarity solution gives

ak5kx0.0. ~24!

Surprisingly this is the same result as was obtained by Mul-
lins and Sekerka in the quasistatic limit@7#. Although the
actual growth rateḋ depends on the diffusion length, the
nondimensional growth rate does not.

Including contributions from dissipation and current con-
finement in the advancing region requiresu2(rW) to satisfy
continuity conditions with the field inside,

u1~x,t !5
jbx

bx0
~25!

at the interface. As before, we perturb the flat interface with
a sinusoid of wave numberk and solve for the growth rate of
the perturbation to linear order in the perturbation’s ampli-
tude. The linear stability calculations then give

ak5
qx0~12b!2j

bq

gk
tanh@gkx0#11

, ~26!

where

qx05
j

2
1F S j

2D
2

1~kx0!
21akjG1/2. ~27!

Equations~26! and ~27! reduce to the dissipative Laplac-
ian result@Eq. ~19!# and nondissipative short diffusion length
result@Eq. ~24!# in the limits j→0, andb→0, respectively.
These equations also can be solved forak , although the
result is messy and so not particularly informative. For the
sake of clarity, we leave the solution as two coupled equa-
tions which we can compare more easily with results from
the earlier analyses.

In the limit thatak is small compared withj, q plays the
role of a wave number whose lower limit is set by the diffu-
sion lengthq.1/2l. This is the length scale against which
features in the evolving pattern can be compared. The factor
of b in the numerator of Eq.~26! then provides the offset
necessary to achieve negative values ofak and thus stability
at long wavelengths.

Settingak50 in Eqs.~26! and~27! allows us to solve for
the marginally stable mode number

kc5
jAb

x0~12b!
. ~28!

Long-wavelength modes withk,kc are stable while modes
with k.kc grow unstably; this is consistent with the overall
picture of a large number of branches advancing behind a
smooth envelope. The critical mode number depends in-
versely on the diffusion lengthl through the constant
j5x0 /2l. Since the diffusion length changes as the pattern
advances, however,j is a more useful control parameter.

It is noteworthy that the conductivity anisotropyg does
not influencekc in the planar geometry despite its significant
role in determiningl c in the radial geometry~see Fig. 3!. The
extentr c of the central boundary condition sets the charac-
teristic scale for quasistationary growth in the radial geom-
etry and couples to the growth front through the pattern’s
transport properties. The diffusion lengthl on the other
hand, sets the scale of the problem outside the advancing
interface and its influence depends only indirectly on the
disposition of currents within the pattern.

Finally, it would appear from Eq.~28! that DBM growth
is inevitable in the planar geometry sincekc diverges when
x050. In fact, the initial transient behavior at the onset of
growth is not treated by Eq.~22! and thus is not accounted
for in Eq. ~28!. Furthermore, the value forb may evolve as
the morphology of the aggregate changes during early

FIG. 4. Plot of the critical perturbation harmonicl c as a function
of the size of the pattern,r 0 /r c , in the three-dimensional radial
geometry model, withg50.01 andR5100r c . Lines are plotted for
b5

1
10,

1
15,

1
20, and

1
25. Predictions for the size-dependent crossover to

stable growth in the anisotropic limit given by Eq.~18!,
r 0* /r c55.5, 8, 10.5, and 13 for the fourb values, respectively,
agree well with the jump inl c for the full solution.
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growth, and this evolution will affect the interface’s stability.
The above analysis simply provides a mechanism by which
the planar DBM, once formed, can be linearly stable. This
analysis also demonstrates that the planar DBM must even-
tually become unstable since the critical mode number van-
ishes as the interface advances.

IV. CONCLUSIONS

The previous sections demonstrate that diffusive pattern
forming systems in which growth currents are confined by
resistive branches within the advancing pattern are capable
of generating the dense branching morphology. We find that
in the two- and three-dimensional radial geometries, dissipa-
tion and current confinement alone are sufficient to stabilize
densely branched growth. However, in the flat geometry,
both dissipation in the advancing region and a short diffusion
length in the displaced region are necessary to account for
stable DBM growth. Our simple yet realistic model predicts
the region of parameter space where densely branched

growth should be seen. This model provides quantitative pre-
dictions for the interfacial velocity as well as for the length
scales at which the DBM can appear. We have focused our
investigation on the long-wavelength stability of the DBM’s
envelope, with the understanding that instabilities at short
wavelengths are responsible for the finely branched structure
of the DBM. Extensions of this model could include consid-
eration of short-wavelength stabilizing mechanisms such as
surface tension and terms accounting for the kinetics of at-
tachment. The problem of mode selection for the dense
branching morphology then could be addressed.

The photographs in Fig. 1 were produced in collaboration
with Len Sander, Roy Clarke, and Nancy Hecker at The
University of Michigan. We also are grateful to Peter Garik
for pointing out the similarity transform used in Sec. III. This
work was supported in part by the MRSEC Program of the
National Science Foundation under Contract No. DMR-
9400379 and in part by the Petroleum Research Fund of the
American Chemical Society under Contract No. 26873-G.
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